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AN EXPERIMENTAL STUDY OF THE
PRESSURE AND HEAT-TRANSFER DISTRIBUTION
ON A 70° SWEEP SLAB DELTA WING IN
HYPERSONIC FLOW

By Mitchel H. Bertram and Philip E. Everhart

SUMMARY

Results are presented for a study of the pressure and heat-transfer distri-
butions and force characteristics of slab delta wings of 70° sweep at Mach num-
bers of 6.8 and 9.6 in air and 18 in helium. The wings had cylindrical leading
edges and were tested with two different noses. One was sharp in plan view and
the other was a tangent sphere with the same diameter as the cylindrical leading
edge. Simple approaches to predicting the heat transfer are shown to be success-
ful if the flow pattern peculiar to the angle-of-attack range under consideration
is taken into account.

INTRODUCTION

At the present time, very little is known about the problem of heat transfer
to highly swept wings and the aerodynamics of such a wing in the vicinity of the
wing apex for the wide angle-of-attack range of interest in glider and reentry
work. Much of the data available are for sharp-leading-edge delta wings and
essentially flat-plate data applicable to high lift-drag gliders and in regions
not close to the leading edge. A systematic research program was started at
Langley Research Center to supply at least a portion of the needed information on
blunt delta wings. As part of this program to supply this information, several
slab delta wings have been studied in the Langley 1ll-inch hypersonic tunnel at
Mach numbers of 6.8 and 9.6 in air and at 18.4 in helium to obtain aerodynamic-
heating, pressure-distribution, static-stability, and flow-visualization data.

A preliminary report on part of the results from this study was given in
reference 1.



SYMBOLS

a speed of sound
c mean aerodynamic chord (3.5 inches)
Cyp root chord
Cp specific heat of air at constant pressure
Cyw specific heat of model skin material
Cy coefficient in linear equation for viscosity (see eq. (1))
CD drag coefficient referred to planform area, Drag
%Sp
Cy, 1ift coefficient referred to planform area, Lify
%,5p
Cn pitching-moment coefficient about 2/3 root chord, Pit"h;:gpiloment
d diameter
h aerodynamic heat-transfer coefficient
J index number
k thermal conductivity
L distance along leading edge measured from apex of slab portion of wing
L/D lift-drag ratio
M Mach number
Ngt Stanton number, h/pucy
Npr Prandtl number
P static pressure
o] heat-flow rate per unit area; dynamic pressure, pmqs/é
r corner radius



R radius

Rm,t:Rm,d Reynolds number based on model thickness or nose diameter and free-
stream conditions

s distance along wing surface normal to leading edge from geometric
stagnation point

surface distance along wing center line from geometric stagnation point

c

84 distance along wing surface normal to leading edge from midline of wing

So distance along wing surface normal to leading edge from midline to
center line of wing

Sp planform ares

ty model skin thickness

t model thickness

T temperature

Te adiabatic wall temperature

u velocity

lod angle of attack

7 ratio of specific heats of air

Ny temperature recovery factor

6 planform ray angle from stagnation point of sphere with origin at
center of sphere nose

V) dynamic viscosity

P density

T time

A sweep angle

Al effective sweep angle

Subscripts:

2 static conditions just behind normal shock



1 local static conditions Jjust outside boundary layer

max maximum

N normal to leading edge or windward surface
0 stagnation-point values

s sphere

w model skin

© undisturbed free-stream conditions

APPARATUS AND TESTS

Tunnel and Nozzles

This investigation was conducted in the Langley ll-inch hypersonic tunnel,
a description of which may be found in reference 2. This blowdown facility has
the capability of operation at different Mach numbers by changing nozzles. 1In
the present tests, nozzles giving nominal Mach numbers of 6.8 and 9.6 with air
and 18.4 with helium were used with a few tests at a Mach number of about 11 in
helium. The Mach number 6.8 air nozzle is a contoured two-dimensional nozzle
machined from Invar to minimize deflection of the nozzle throat due to thermal
gradients. The Mach number 9.6 air nozzle is a contoured three-dimensional
nozzle with square throat and test section. The Mach number 18 helium nozzle is
contoured and has a circular cross section. A description and calibration of
these nozzles may be found in references 3, L4, and 5.

Models

The wing chosen for this investigation consisted of a delta planform slab
having a 70° sweep and a cylindrical leading edge. Wings were constructed having
either a sharp prow or a blunt prow. The sharp prow was formed by the inter-
section of the elements of the cylindrical leading edge on the center line of the
wing. For the blunt prow the apex was a tangent sphere with the same diameter as
the cylindrical leading edge. The models are presented in figure 1.

Two heat-transfer and two pressure models, a sharp and blunt prow of each,
were electroformed from nickel and had a skin thickness of approximately
0.030 inch and an overall thickness of 0.75 inch. The models were sting mounted
in the test section on a movable support strut which could be rotated through an
angle-of-attack range. Pressure and thermocouple locations for the models are
shown in figure 1(a). The thermocouples on the heat-transfer models were No. 30
chromel-alumel wire (0.010-inch diameter) fastened to the model by welding a
preformed bead into a hole drilled through the skin. The instrumentation is laid
out normal to the leading edge and on the slab they are also arranged on rays

N



from the slab apex. Twoc main distance parameters are shown. One is labeled L/t
and is the distance in diameters along the leading edge measured from the apex of
the slab portion of the wing. (Note that the slab thickness is equal to the
leading-edge and nose diameters.) The other distance parameter utilized is the
distance along the wing surface normal to the leading edge also nondimension-
alized in terms of wing thickness so/t. Continuous records of the tunnel stag-
nation temperature and the model skin temperatures were obtained on 18-channel
recording galvanometers. Surface pressures were measured by means of the NASA
aneroid-type six-cell recording units described in reference 2. An accuracy of
approximately one-half of 1 percent of full-scale deflection can be obtained on
the low-pressure instruments through careful calibration and reading of the
records. For this investigation, pressure cells were chosen to give as near
full-scale deflection as possible for the measuring station.

The force-test models consisted of four wings constructed of stainless steel
having a thickness of 0.75 inch (7 thicknesses long) or 0.25 inch (21 thicknesses
long) with a sharp- and a blunt-prow model of each thickness. (See fig. 1(b).)
Shown in figure 1(b) is a photograph of the force models showing the half-cone
adapter used to fasten the 21-diameter-long models to the sting. A sketch of the
2l-diameter models and sting mount is presented in figure 1(c). These models had
the same span and chord as the heat-transfer models. The force-test models were
also used in the oil-flow and schlieren tests.

Range of Test Conditions

Heat-transfer and pressure measurements and surface flow data were obtained
at Mach numbers of 6.8 and 9.6 in air and at a Mach number of 18 in helium.
These models were tested for angles of attack from O° to 45° in air and from O°
to 10° in helium.

Lift, drag, and pitching-moment data were obtained at Mach numbers of 6.8
and 9.6 in air with a sting-mounted strain-gage balance. A circular metal shield
was used to protect the exposed portions of the balance behind the model. TFor
the M, = 6.8 tests the angles of attack of the models were measured optically
by use of a light beam reflected from the model by a prism onto a calibrated
scale. This method gives the true angles of attack of the model regardless of
the deflection of the balance and sting under load. The angle-of-attack range
for the M, = 6.8 tests was from -2.5° to 45° and was obtained by using the
same movable support strut as used in the heat-transfer test. The M, = 9.6
data were obtained at angles of attack from -2.59 to 30°. At the higher angles
of attack the tunnel boundary layer separated because of the strong shock from
the models, struck the models, and invalidated the data. Because of the smaller
size of the M, = 9.6 nozzle windows, the prism method could not be used and the
angles of attack of the models were obtained from the schlieren photographs.

The stagnation temperature was maintained at an average value of 650° F at
Mo = 6.8 and 1,200° F at M, = 9.6 by means of a variable-frequency, resistance-

tube heater to insure against liquefaction of the air. The M, = 6.8 tests were
made at stagnation pressures of approximately 10 and 30 atmospheres and gave

Reynolds numbers based on model thickness (0.75 inch) of about 0.8 X 10° and



2.6 x 10°. The stagnation pressures for the M_ = 9.6 tests were approximately
25 and 45 atmospheres and gave Reynolds numbers of about 0.4 X lO5 and 0.8 x 10°.
The M, = 18 tests were made at a stagnation pressure and temperature of 1,600-
pound-per-square-inch gage and 60° F and yielded a Reynolds number of about

5.1 X 102. For the heat-transfer tests the wall temperature averaged about
570° R.

Visual Test Techniques

Schlieren photographs were taken of the flow pattern for each run. Top view
schlieren photographs were obtained by using the force-test models. The schlieren
system used in these tests had a single-pass vertical Z-shape light path with a
horizontal knife edge. The light source for the schlieren photographs was a
mercury-vapor arc lamp having a flash duration of about 3 microseconds.

Surface flow studies were made on the force-test models at Mach numbers of
6.8 and 9.6 in air and 18 in helium. Two oil-flow techniques were used. One
method consisted of completely coating the model with a mixture of oil and lamp-
black. The second method consisted of applying the mixture of oil and lampblack
to the model in a dot pattern.

Data Reduction

Heat-transfer coefficients were obtained from the temperature-time curves by
use of the following thin-skin heat-flow equation:

dT,,
q = h(Te - Tw) + Qe = Pelyty 3 T %

The finite time required for the proper flow conditions to be established
in the nozzle by the quick start technique (1 to 2 seconds) was such that the
temperature rise of the skin was sufficient to require conduction corrections.
The required second derivative of surface temperature with surface distance
(normal to the leading edge of the slab portion of the wing) was evaluated by a
three-point finite-difference method. The resulting equation for conduction in
the skin material at a point n 1is:

(Ta - Tnp)sin’(§)
n-1

o .
s Jf S
S —_—
(%) o (R)
in which the intervals are equally spaced and As 1is the surface distance from
the end of one interval to the start of the next (n to n + 1, for example).
The index exponent j is equal to O for the flat plate and cylinder and equal

to 1 for the sphere. Also R = d/2 for the sphere or cylinder and R = t/2
for the flat plate and the skin thickness ty; and thermal conductivity ky

were assumed constant over the intervals. Since the preceding equation is

+ (Tn - Tn+2)s1n‘](§)
1
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indeterminate at s = O for a sphere, in this case the following form is used:

thW
q-C, s=0 =~ R2(AS>2 (Tn - Tn+2)

R

Nickel properties were obtained from references 6 and 7 and are fitted by the
following empirical equations:

ky = 70.4 - 0.033331,, E}%ﬁf

cw = 0.000058T,, + 0.081, St
v 2%y ? 1p-OF

where T, is in degrees Rankine. The earliest time at which the tunnel stagna-

tion temperature and pressure could be considered constant for each run was deter-
mined from the temperature traces. At this time, the model skin temperature Ty

was read and dTy/dr determined from the slope of the temperature-time curve for
each thermocouple. Adiabatic-wall temperatures Te were calculated for each
station from the relation:

y - 1.2

Tttt W
T T 1

R

Local Mach numbers M; were determined from the measured pressures by taking

into account the entropy rise across the appropriate shock. For the sphere a
normal shock was used and for the cylindrical leading edge and slab a swept-
cylinder entropy rise was assumed. The recovery factor was calculated from the
square root of the T-prime Prandtl number by Monaghan's laminar T-prime method as
shown in reference 8. The variation of the adiasbatic wall temperature with sur-
face pressure and distance is shown in figure 2 for Mach numbers of 6.8 and 9.6.
As indicated in figure 2(a), the adiabatic wall temperature ratios on a sphere
for M, = 6.8 and M, = 9.6 were the same. In figure 2(b) the vertical line
on the leading-edge plot indicates the Jjunction of the cylinder and slab. The
dashed lines to the right of this vertical line indicate the values of recovery-
temperature ratioc that would have been obtained had the cylinder continued
beyond this Jjunction.



RESULTS AND DISCUSSION

Details of Flow in Leading Edge and Nose Region

Cylindrical leading edge in air.- In order to assess the leading edge of the
delta wing under study the results were compared with those from cylinder studies
where attempts were made to obtain results valid for cylinders of infinite length.
Much of these available data for the pressure distribution on a cylinder in air
for various Mach numbers (refs. 9 to 11) are presented in figure 3. The data
indicate that the pressure parameter p/pmax is a function only of position on

the cylinder for Mach numbers normal to the cylinder greater than about 3.5 at
least for s/d < w/L.

When the pressure distribution is fixed, then Lees theory (ref. 12) predicts
that the distribution of heat-transfer coefficient will also be independent of
the free-stream Mach number. Iees theory was evaluated by both the approximate
solution which assumes the velocity distribution is linear at the slope evalu-
ated at the stagnation point and the integral method in which the actual velocity
and pressure distribution (fig. 3) are used. (See appendix for details on the
application of Lees theory.) These results are compared in figure 4 with some
results obtained in the Langley ll-inch hypersonic tunnel at M, = 9.6 on an

unswept cylinder which formed the nose of a blunt slab. There is not a great
deal of difference between the two methods of evaluating Lees theory even though
the velocity distribution is decidedly nonlinear above values of s/d of 0.3 or
0.4, Lees theory for the heat-transfer distribution was used with a stagnation-
point value from Fay and Riddells theory (ref. 13) described in a following dis-
cussion. The agreement of theory with experiment is good, considering the uncer-
tainties in the data.

Consider now the leading edge of the delta wings of this investigation.
Figure 5 shows the variation of maximum Stanton number with angle of attack for
the cylindrical leading edge of the delta wings at M, = 6.8 and M _= 9.6.
These maximum Stanton numbers are actual leading-edge values chosen no matter
where the maximum occurred and therefore are somewhat conservative. These maxi-
mums were generally obtained close to the geometric stagnation point. The param-
eter L/t is the station along the leading edge measured from the apex of the
slab portion of the wing. (See fig. 1(a).)

The data are compared with predicted values obtained from the Fay and
Riddell equation for heat transfer at the stagnation point of a blunt body which
in a perfect gas may be written in terms of Stanton number

) 0.5&(2)j/2 0.1 |pg HofT, 1/2 1 d(u/ao)>
(NSt,m \} Rn,d)o = —_N19£~6—CW R ¥§<T_o> M, \a(s/a) o (1)

in which Jj = 0 for two-dimensional flow and J = 1 for axially symmetric flow
and where

8



0 refers to conditions at stagnation point outside boundary layer
o refers to conditions in free stream
_ uwTO

W
“OTW

Conditions with zeroc subscript were evaluated at the Mach number normal to
the leading edge where for a sweplt wing

My = M, cos A' (2)
in which the effective sweep angle A' 1is given by
cos(90 - A') = cos(90 - A)cos a (3)

The Sibulkin equation for heat transfer to the blunt leading edge is (adapted
from ref. 1k)

_ 0.763(0.747) 173\ M Bg 3[4 /0)
(Nst,ooﬁ;,d)o ) Ng.6 Moo U—Q_(COS &) (d(s/d) 0 W
D

where the 0.747 factor is obtained from reference 15 and

2 (5)
5 )
b+ 2(y - 1)My

\v}

T _|:27M§—(7—l)][(7-l)M§+2] (6)
® [(7 + l)MN]E

The values cf the geometric stagnation-point velocity gradient used in equa-
tions (l) and (h) varied as follows with Mach number normal to the swept cylinder
(based on data contained in fig. 3).

=

(ﬂi@

M
N a(s/t) 0
1.5 1.88
2.0 2.0%
5.0 2.15
4.0 2.18
9.6 2.18




In general, the Stanton numbers on the blunt-nose model at a Mach number of
6.8 (fig. 5(a)) are above the predicted values of Fay and Riddell. Similarly,
at a Mach number of 9.6 (fig. 5(b)), both the Fay and Riddell and the Sibulkin
equations underestimate the measured Stanton numbers on the blunt- and sharp-nose
models. However, at L/t = 5, cylinder theory shows fair agreement with the
measured Stanton numbers on the blunt-nose model at a Mach number of 9.6 up to
an angle of attack of about 30°. TFor angles of attack up to 20° the blunt-nose
data at M, = 6.8 and M = 9.6 tend to follow the trend with angle of attack

predicted by the Infinite cylinder theory but drop below the theory at the higher
angles of attack. The data at the L/t = O station, which may be considered as
a line on a sphere, did not depart from the theoretical trend at the higher
angles of attack. For the angle-of-attack range of the tests, the sharp-nose
data followed the trend predicted by cylinder theory. However, an examination of
the distribution of heat transfer about the leading edge of the sharp-nose wing
at an angle of attack of 30° to 35° (to be presented later) indicates the data
from the particular station are probably too high because of inadequate conduc-
tion corrections.

Schlieren studies have shown that at low angles of attack, the leading-edge
shock when viewed from the top is parallel to the leading edge away from the nose-
influenced region; however, at an angle of attack of 20° and higher, the shock is
inclined at an angle to the leading edge as is shown in a later section. (See
ref. 1.) With this change in the shock relationship to the leading edge is asso-
ciated a change in the flow pattern on the wing. These schlieren photographs and
flow studies are presented in detail in a later section.

Spherical nose in air.- Available data for the pressure distribution on a
sphere at various Mach numbers in air (refs. 14 and 16 to 20) are shown in fig-
ure 6(a) together with the results obtained on the sphere nose of the delta wing
of the present tests. One notes that, as for the cylinder results, the pressure
distribution 1s practically invariant with Mach number for Mach numbers greater
than 3.5 or 4. The delta-wing data which are averaged results over small inter-
vals for all the data obtained show good agreement with the previously published
sphere pressures.

These delta-wing data are given in more detail in figure 6(b) where it is
designated according to angle of attack, Reynolds number, and station without
averaging. The value of surface distances is obtained from the distance of an
orifice from the geometric stagnation point along a geodesic. Both ray angle
and angle of attack in the range shown apparently have no discernible effect.

The velocity distribution and the local Mach number of the averaged data
obtained at M, = 9.6 on the spherical nose of the delta wing are shown in fig-
ure 6(c). On this same figure for purposes of comparison are shown the data
obtained on the unswept cylinder at M, = 9.6 (see fig. 3) in the form of local

velocity. The lines in figure 6(c) represent a fairing of all the hypersonic
data in figures 3 and 6(a).

Figure T(a) presents the Stanton number distribution on the spherical nose
of the delta wing in air. The measured Stanton numbers on the spherical section
are well predicted by Lees theory with the Fay and Riddell stagnation-point value.

10



However, the scatter of the data is admittedly greater than is desirable probably
because the small diameter of the nose required the application of substantial
conduction corrections. As for the pressures presented previously, both ray
angle 8 and angle of attack in the range shown had apparently no effect.

Again, as for the pressure, the data shown in figure 7(a) were averaged
over small intervals and these results are shown in figure T7(b). The present
data show reasonable agreement with the data obtained by Crawford and McCauley
(ref. 14) on the hemisphere nose of a cylinder model.

Sphere and cylinder in helium.- Available data for the pressure distribution
on a sphere in helium flow (refs. 21 and 22) are shown in figure 8(a) together
with the results obtained on the sphere nose of the delta wing of the present
tests. There is general agreement between the various sources of data. Some of
the scatter in the shoulder region (s/d values around 0.78) can probably be
attributed to the Reynolds number effects on surface pressure shown in
reference 1.

The velocity distribution and the local Mach number for these helium data
are presented in figure 8(b). For the velocity the lines shown on the figure are
the faired values of all the pressure results from figure 8(a). For the Mach
number the lines shown are the results obtained in air (fig. 6(c)). There are
apparently only relatively small differences in the local Mach numbers obtained
on these blunt shapes in air and helium.

Pressures and Heat Transfer Along Center Line of Wing

Pressures.- The center-line pressure distribution on the blunt-nose wing is
shown in figure 9. The data are shown over a range of angle of attack from 0° to
4L6C. The pressure parameter is p where p is the stagnation pressure

Po 0

after a normal shock. The distance parameter sc/t is the distance along the
surface on the center line of the wing in terms of leading-edge diameters. The
origin of the surface distance is always taken at the geometric stagnation point
of the spherical nose. On the spherical nose there is a Mach number freeze,
that 1is, p/po is a function only of position on the sphere and not of free-

stream Mach number as discussed earlier. On the slab portion of the high-

pressure side of the wing, the pressure gradient induced by the blunt nose, which
is so pronounced at an angle of attack of 0°, becomes less severe with increasing
angle of attack and virtually disappears at an angle of attack of 20° and greater.

Heat transfer.- Figures 10(a) and 10(b) present the variation in heat-
transfer-coefficient ratio along the center line of the blunt-nose model at
M, =6.8 and M, = 9.6. Heat-transfer coefficients measured at points along the

center line, expressed as a fraction of the value calculated for the stagnation
point of a sphere, are plotted against surface distance along the wing center
line from the geometric stagnation point. The measured heat-transfer rates on
the sphere nose were presented in figure 7. The results at a Mach number of 6.8
and 9.6 are similar. On the slab, at an angle of attack of 0°, oil flow showed
that the nose effect extended back over the entire length of this short model

11



and, in addition, the cylindrical leading edge also has an effect which increases
the pressures over that for the infinitely thin wing of the same planform shape.
The heat-transfer coefficients in figures lO(a) and lO(b) are increased by the
nose-induced pressures and thus are underestimated by strip theory. However, at
M, = 6.8, strip theory (o = O°) modified for pressure, pressure gradient, and
nose geometry (ref. 8) predicts the correct trend for the heat-transfer coeffi-
cients. As the angle of attack increases, the distance over which the induced
pressures due to the nose are significant decreases as was shown in figure 9,

and at an angle of attack of 219 the heat transfer on the windward surface of the
slab is satisfactorily predicted by the constant-pressure strip theory from about
2 diameters back from the stagnation point.

At higher angles of attack, the flow becomes outward over the leading edge
and at an angle of attack of 429, cross-flow theory gives a good prediction of
the center-line heat-transfer rates. An exception to this good agreement with
the cross-flow theory is evident in the data at the higher angles of attack and
values of s/t at Mach number 6.8. (See fig. 10(a).) This discrepancy between
theory and experiment is believed to be a result of transition of the boundary
layer to turbulent flow. This effect is also exhibited by unpublished results
shown in figure 10(c) obtained in the Langley Unltary Plan wind tunnel on a
spherical-nose wing tested at a higher Reynolds number and lower Mach numbers
than in the present tests. The configuration was essentially the same as the one
tested in the Langley ll-inch hypersonic tunnel except that this wing was 1 inch
thick and 20 wing thicknesses long instead of 7.

The cross-flow theory is determined from an adaption of the Fay and Riddell
relation for laminar stagnation-point heating. (See eq. (1).) 1In this case, the
component of the free-stream flow normal to the windward surface of the wing is
assumed to be the only one that contributes to the aerodynamic heating. With
this assumption, the laminar cross-flow stagnation-point heating as a ratio to
the laminar stagnation-point heating on a sphere 1s as follows for a slab wing
with rounded edges where the edge radius of the wing is the same as the radius
of the sphere:

1/2
Bef _ |1 Po,N(uo,N>°'8( %o )0'5 4 (7)
By o |2 Po \Mo To,n/ So/t - 0-285

This result is independent of the wall temperature. Where Sy 1s the surface
distance from the midline of the leading edge to the center line of the wing
normal to the leading edge, the relation between surface distance normal to the
leading edge and center-line surface distance from the geometric stagnation point
of the sphere nose is given by the relation:

S
£ - 0.78
Se_* 0.785( - 2—"“) (8)

t cos A n

12



The values from equation (1) used to normalize the data presented in fig-
ure 10 are as follows:

N o0

Moo < St) ROO’d>O,S
5.91 3.72

4,65 .73

6.8 6.84

9.6 8.95

Ir po N/pO for hypersonic flow is given by the approximation
J

= singa (9)

then egquation 7 may be simplified somewhat tol

Der _sina (“O,N>O'8 To )0'5 u (10)
By s V2 Ho To,N Soft - 0.285
and
-1 2
T 1+ S
° _ (11)

4 designates the nondimensional cross-flow stagnation-point velocity gradient at
a point on the center line of the wing as a ratio to the velocity gradient at the
stagnation point of a sphere

. d(u/ao)/h(s/t) (12)
(o) fatrai] of N

lFor very high Mach numbers and high angles of attack in flight, equa-
tion (10) reduces to

h :
1.1

cf ~ (sin a) % 4

ho s Soft - 0.285
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The value of U is expected to be a function of the ratioc of the edge
radius of the wing to the distance from the leading edge to the root chord of the
wing measured normal to the leading edge. For disks this ratio is designated
r/R and data indicate that this velocity gradient ratio varies with r/R as in
the following sketch (for air) which utilizes the results already presented for
a sphere plus disk data from references 19 and 23 to 28 and unpublished results
from the Langley 9-inch supersonic tunnel at a Mach number of 3.6.

P IR U IS N
2 4 X

r’R

These values of u were assumed to hold for the delta wing with the relation
between the disk dimensions and the wing dimensions, with t = 2r, taken to be

1
So/t - 0.285

1
2

z
R

Visual Studies of Wings

Surface oil-flow patterns.- The role of nose shape, angle of attack, and
Mach number in determining the flow patterns on the wing are shown in figures 11
to 14k. A mixture of 0il and carbon black was applied to the wing in various
ways. One way was to coat the wing uniformly with the mixture before the run,
another was to apply the o0il mixture in stripes, and the third was to apply the
01l mixture in discrete dots distributed over the wing.

At an angle of attack of 0° as shown in figure 11, the o0il and lampblack
patterns are similar for the Mach numbers shown which are 6.8 and 9.6 in air and
approximately 11 and 18 in helium. Along the blunt leading edge, the flow pic-
ture is as expected from a swept cylinder. A region of central outflow is
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evident for both the sharp- and blunt-prow models; however, the region influenced
by the nose is smaller in the case of the sharp-prow models. This central out-
flow is a consequence of the mass of air at high induced pressures which enters
the wing over the apex region and is contained by the shock, the wing surface,
and the high pressure induced in the air coming from the leading-edge region. 1In
this sort of phenomenon, dissipation of this prow effect must occur as this air
moves further downstream and the proportion of the wing surface affected must
diminish. This dissipation can be seen by comparing the 7-diameter wing with the
2l-diameter wing. The model with thickness-to-chord ratio (t/cr) of 0.143% is

7 thicknesses long; whereas the model with t/c, = 0.04L8 is 21 thicknesses long.

Surface flow studies at Mach number of 6.8 and 9.6 in air and at angles of
attack from 10° to 45° are presented in figures 12 and 13. The surface shears
indicate an inflow toward the center of the wing at angles of attack of 10° to
20°. At an angle of attack of 500 the flow appears to be straight. With
increasing angle of attack, cross-flow effects start to predominate and the flow
at the surface turns out from the center as shown by the cases for angles of
attack of 40° to 45°. The surface flow patterns at angle of attack are similar
for Mach numbers of 6.8 and 9.6. Surface flow studies at a Mach number of 18.L
are presented in figure 14(a) for an angle of attack of 10° and are similar to
the Mach number 6.8 and 9.6 patterns.

Surface flow studies for the leeward side of the models (figs. 12(c), 13(c),
13(d), and 14(b)) indicate that, at low angles of attack, there is strong prow
influence similar to that shown at an angle of attack of 0° (fig. 11) and at the
higher angles of attack of the tests separated flow existed on the leeward side.
These effects are evident even when the half-cone that is used as a model support
on the thin model covers much of the lee side. Several photographs of the lee-
ward side indicate erratic flow patterns which are a result of oil accumulation
splattering during tunnel shutdown.

Side and top view schlieren photographs.- Figures 15 to 21 present the side
view and top view schlieren photographs of the sharp- and blunt-nose models. The
flow field for the 7-diameter model is representative of the forward one-third of
the 2l-diameter model magnified 3 times. In figures 15 and 16, the model is at
an angle of attack of 0° at M_ =6.8 and My, = 9.6 in air and at M_ = 11.1
and M, = 18.4 1in helium. As would be expected from the predicted insensitivity
of blunt-body shock shapes and detachment distances with Mach number, the shock
shape is very similar at all the Mach numbers of the tests, as shown in the side
view schlieren photographs of figure 15. The shock is attached on the sharp-prow
model and detached on the blunt-prow model as expected.

The shock shapes seen in the Mach number 6.8 and 9.6 top view photographs of
the sharp-prov model (fig. 16(a)) are much the same; also the shock shape is not
much different at Mach number 18.4 in helium. The sharp-prow model has a conical-
shaped leading-edge shock. In the case of the blunt-prow model (fig. 16(b)), the
first part of the shock emanating from the nose is the same as that on a sphere.
However, in the region where this nose shock would strike the leading edge there
is an interaction between the bow shock and the leading-edge detached shock char-
acterized by the inflection which can readily be seen in the schlierens. The



leading edge is thus seen to play a significant part in the flow over the wing.
Also, it can be seen from figure 16(b) that far enough away from the nose of the
blunt-prow model the shock is parallel to the leading edge at o = o°.

The shock shapes for the cylindrical-leading-edge models at angles of attack
of 10°, 20°, 30°, and 40°, and at Mach numbers of 6.8 and 9.6 are presented in
figures 17 to 20. The side view photographs indicate no appreciable change in
the shock shape due to Mach number. At a Mach number of 9.6 and an angle of
attack of 40° (figs. 18(a) and 18(b)) the model nose shock caused the tunnel-wall
boundary layer to separate and engulf approximately one-half of the model, This
tunnel-wall boundary-layer separation is also shown in the plan view photographs
of figure 20. From the top view photographs, it can be seen that a conical
shock existed on the sharp-prow model throughout the angle of attack and Mach
number ranges of the tests. However, the shock shape for the blunt-prow model is
different. If the extent of the nose influence 1s judged by the inflection in
the leading-edge shock, the blunt nose affects less of the wing length as the
angle of attack increases. Since the spherical nose has a shock of fixed shape,
independent of angle of attack in the range shown, this change in shock shape is
mainly due to changes in the shock around the cylindrical leading edge with angle
of attack. Previously, it was shown that at a sufficient distance from the nose
of the blunt-nose model, the shock is parallel to the leading edge at an angle of
attack of 0°. (See fig. 16(b).) This is also true of the shock at an angle of
attack of 10°. (See figs. 19(b) and 20(b).) At angles of attack of 20° and, to
a more noticeable extent, at 300 and 40° the main-stream flow senses the local
wing span and the leading-edge shock shape becomes conical in nature.

Schlieren studies at an angle of attack of 10° for a Mach number of 18.4
(helium) are presented in figure 21 and the shock shape is essentially the same
as for the Mach number 6.8 and 9.6 tests in air.

Pressure Distribution on Wing

Pressure distribution at zero angle of attack.- The measured pressure distri-
butions at an angle of attack of 0° on the sharp-nose and blunt-nose models at
Mach numbers 6.8 and 9.6 in air and Mach number 18 in helium are presented in
figure 22. The pressures in terms of free-stream static pressure are plotted
against the nondimensional distance along the wing surface normal to the leading
edge where t 1s the wing thickness. The short-dashed vertical lines at
so/t = +0.785 1indicate the Juncture of the leading edge and slab region. The

value for R, . shown here is the Reynolds number for the tests based on undis-
b

turbed free-stream conditions and wing thickness. The parameter L/t is the
station along the leading edge measured from the apex of the slab portion of the
wing. The solid symbols indicate points along the model center line. The decay
in pressure along rays from the apex is evident and most clearly seen in the
center-line data. This is the effect seen in the center-line presentation in
figure 9. Qualitatively, the results in air and helium are similar. The maximum
pressure on the leading edge is a factor of 5 to 10 higher than the pressure on
the slab. The pressure on the slab is relatively constant at a given station,
L/t, on the wing.
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In the leading-edge region the pressure data of figure 22 are compared with
empirical curves for essentially infinite cylinders shown by the solid line and
for spheres given by the dashed line. These curves are fits to the hypersonic
sphere and cylinder data discussed in a previous section. Remember that the
L/t = 0 station is a line on a sphere. The leading-edge data for the sharp-prow
models agree well with the correlated cylinder data except perhaps in the leading-
edge—slab-juncture region. There are significant deviations from this correlated
data for the blunt-prow model data. The correlated sphere data show reasonable
agreement with the blunt-prow model data for the L/t = O station. The short-

dashed line in the slab region in figure 22(a), blunt nose, R, t = 2.4 x 10° is

from data obtained on sphere-nose rods. The sphere-nose rod data underestimate
the wing center-line data. A detailed comparison of rod data with data from this
wing is contained in figure 13 of reference 1.

Pressure distribution at angle of attack.- The angle-of-attack pressure dis-
tributions for Mach numbers 6.8 and 9.6 in air and Mach number 18 in helium are
presented in figures 23 to 27. The Mach number 9.6 data are presented for two
Reynolds numbers. The pressure data are again plotted against surface distance
normal to the leading edge of the wing. The surface distance is measured from
the midline of the cylindrical leading edge. Positive so/t values indicate the
windward surface of the wing and negative so/t, the leeward surface. The iso-
lated cylinder data are again shown by the solid line and the sphere data, by the
dashed line. Two-dimensional oblique-shock theory, Prandtl-Meyer expansion, and
Newtonian theory for a sharp-leading-edge unswept plate at the same angle of
attack as the wing are presented for reference purposes for the slab region. The
correlated cylinder data give a good approximation to the leading-edge pressures
for both the sharp- and blunt-prow models at Mach number 6.8 for the angles of
attack of the test. (See figs. 23 and 2k.) At higher Mach numbers (M, = 9.6

and M, = 18) the leading-edge data show fair agreement with the isolated cylinder

data for the sharp-prow model. (See figs. 25 and 27.) TFor the blunt-prow models
at the higher Mach numbers and the lower angles of attack (a < 25°), the measured
pressures are below the correlated cylinder data (figs. 26 and 27); for the higher
angles of attack fair agreement is shown. The leading-edge pressures at L/t =0
for the blunt-prow model are approximated by correlated sphere data for the Mach
numbers and angles of attack of the tests. The peak in pressure on the leading
ed%e has disappeared at approximately a = 40°. (See figs. 23(d), 25(i), and
26(1).)

The pressures on the slab portion of the windward side of the wings at Mach
number 6.8 (figs. 23 and 24) are relatively constant throughout the angle-of-
attack range. For ..ngles of attack from 5° to between 10° and 20°, the pressures
are closely predicted by oblique-shock theory. A good approximation of the pres-
sures at higher angles of attack was obtained from Newtonian theory. As discussed
earlier, the pressure gradient induced by the blunt nose which was so pronounced
at an angle of attack of 0° (fig. 22) becomes less severe with angle of attack
and virtually disappears at an angle of attack of 20° and greater. Similar
pressure-gradient effects are indicated at a Mach number of 9.6.

At a Mach number of 9.6, oblique-shock theory and Newtonian theory both
underestimate the pressures on the slab portion of the high-pressure side of the
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wings at the low angles of attack. (This lack of agreement is most evident in
figs. 25(a), 25(b), 26(a), and 26(b).) At an angle of attack of 10° (figs. 25(c)
and 26(c)), oblique-shock theory gives a reasonable prediction of the slab pres-
sures whereas for the angle-of-attack range from 15° to 20° the pressures are
overestimated by oblique-shock theory and slightly underestimated by Newtonian
theory. TFor angles of attack greater than 25°, Newtonian theory agrees well with
the slab pressures. Figure 27 presents the pressures on the slab portion of the
wings at a Mach number of 18.4 (helium) at angles of attack of 5° and 10°. The
results are similar to the air tests; however, the pressures in helium are about
four times the air values. The leading-edge pressures for the sharp-prow model
show good agreement with correlated cylinder data which overestimate the pres-
sures on the blunt-prow model. Both Newtonlan theory and oblique-shock theory
underestimate the pressures on the slab portion of the wings for the low angles
of attack studied in helium similar to the results obtained in air.

Stanton Number Distribution on Wing

Stanton pumber distribution at zero angle of attack.- The Stanton number
distribution at an angle of attack of 0° on the models at Mach numbers of 6.8 and
9.6 are presented in figure 28. The vertical scale is the laminar-heating corre-
lation parameter, Stanton number times the square root of Reynolds number based
on wing thickness. As shown in figure 28, the data obtained are apparently
laminar. The top and bottom sets of data differ mainly by the Reynolds numbers
at which they were taken. Lees theory (ref. 12) for the heat-transfer distribu-
tion around a cylinder and a sphere by the integral method are shown in the
leading-edge region. This distribution was used with the Fay and Riddell heating
value for the stagnation point of an unswept cylinder (eq. (1)) utilizing as the
initial velocity gradient d(u/ao)/d(s/t) = 2.19 and the component Mach number

normsl to the leading edge. The empirical curve for pressure distribution in the
leading-edge region shown in figure 22 was used 1in performing the integration.
(See appendix.) The heating distribution is actually that shown in figure k.
Fair agreement with the appropriate theories is shown in the leading-edge region
even though over most of the leading edge the known shock shape is not that to be
expected for the infinite cylinder assumed in theory. (See fig. 16.)

On the slab, laminar strip theory (ref. 8) with zero pressure gradient and a
pressure ratio of unity gives only a rough approximation of the heat transfer.
The flow assumed in the strip-theory calculation is more or less streamwise and,
as was shown in the surface flow studies (fig. 11), the surface flow directions
are far from streamwise over a large portion of the wing. The heat transfer is
higher along the wing center line (solid symbols) than on other parts of the slab
surface at a given value of sg/t.

Stanton number distribution at angle of attack.- Details of the heat-transfer-
coefficient distribution at angle of attack are shown in figures 29 to 31. 1In
figure 29 are shown the details of the M, = 6.8 Stanton number distribution
against distance normal to the leading edge at angles of attack of 10° to 46° for
the blunt~nose model. Heat-transfer tests were not made on the sharp-nose model
at M, = 6.8. As at an angle of attack of 0°, fair agreement with the appropriate
theories 1s shown in the leading-edge reglon for the angles of attack presented.
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On the slab at an angle of attack of 10° (fig. 29(a)), the measured Stanton num-
bers are below the prediction of strip theory; however, at an angle of attack of
20° (fig. 29(b)) strip theory gives a reasonable approximation of the Stanton
number distributicn. ©Similarly, cross-flow theory agrees well with the measured
data at an angle of attack of 20°. This cross-flow theory is obtained directly
from equation (10) but is plotted against S5 rather than against s, and
strictly should be compared only with the solid symbols representing data on the
center line of the slab part of the wing. At the higher angles of attack

(figs. 29(c) to 29(e)), there is considerable discrepancy between the data and
the cross-flow theory at the larger values of so/t. This discrepancy is believed
to be due to boundary-layer transition which was discussed in an earlier section
where only the heat transfer along the center line of the wing was considered.
The detailed distribution in figure 29 indicates transition affects a large por-
tion of the wing well off the center line.

The heat-transfer data for the sharp-nose model at a Mach number of 9.6 and
various angles of attack are shown in figure 30. The swept cylinder predictions
are somewhat below the measured Stanton numbers throughout the angle-of-attack
range of the tests. At low angles of attack, strip theory overestimates the
Stanton numbers on the slab. At angles of attack from 15° to 30° the measured
heat-transfer data agree well with strip theory; however, the theory is below
the data at o = 35°. Again, cross-flow theory gives a fair prediction of the
Stanton numbers on the center line of the slab.

Figure 31 presents the heat-transfer-coefficient distribution on the blunt-
nose model at a Mach number of 9.6 and for angles of attack from 2° to 41°. In
the leading-edge region the agreement between the measured Stanton numbers and
the theories improves with angle of attack. A large peak in heat transfer
(figs. 31(h) and 31(i)) still occurs on the leading edge even though no such peak
is noticeable in the pressure, especially at o = 41.5°. (See figs. 26(h) and
26(i).) This peak in heating can be an edge effect and cross-flow theory, if
carried out spanwise for these ratios of edge radius to semispan, would give a
pesk near the edge. At an angle of attack of 20° (figs. 31(e) and 31(f)), there
is reasonable agreement with strip and cross-flow theories on the slab. At the
higher angles of attack the slab Stanton numbers show fair agreement with cross-
flow theory but are overestimated by strip theory as was true of the sharp-nose
model. At the conditions of the tests at a Mach number of 9.6, no consistent
evidence of boundary-layer transition was obtained.

Aerodynamic Characteristies

The variation of the aerodynamic characteristics with angle of attack is
shown in figures 32 and %3 for Mach number 6.8 and 9.6 tests in air. Because of

tunnel-wall boundary-layer separation (see figs. 18 and 20), no data are pre-
sented at a Mach number of 9.6 for angles of attack greater than 30°. No data
were obtained on the 2l-diameter models (t/cr = 0.0h8) below an angle of attack

of 150 because of induced loads caused by exposure of the conical adapter. The
coefficients obtained from two-dimensional shock-expansion theory for a flat
plate (t/cr = O) and from modified Newtonian theory are presented for comparison

with the test data. The measured 1ift coefficients for the 7-diameter models
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(t/cr = O.lh}) show good qualitative agreement with the modified Newtonian theory.

(See figs. 32(a) and 33(a).) Shock-expansion theory gives relatively good agree-
ment with the 1ift data only at the lower angles of attack. For the 21-diameter
models (t/cr = 0.0MB) (figs. 32(b) and 33(b)), the measured 1lift coefficients are

below the shock-expansion predictions and above modified Newtonian estimates and
the results from the 7-diameter model.

Modified Newtonian predictions agree qualitatively with the measured drag
coefficients for both the T-diameter and the 21-diameter models.

At & Mach number of 6.8, (L/D)_

angle of attack of approximately 16° and on the blunt-prow model at an angle of
attack of approximately 22°. At & Mach number of 9.6, (L/D)max occurred on

the sharp- and blunt-prow models at an angle of attack of about 24°.

occurred on the sharp-prow model at an

CONCLUDING REMARKS

Results have been presented for a study of slab delta wings of 700 sweep at
hypersonic Mach numbers. These wings had cylindrical leading edges and experi-
ments were run with the nose formed by the intersection of the elements of the
cylinders. on the wing center line and with the nose blunted to a tangent sphere.

At the lower angles of attack the heat transfer to the leading edge of this
delta wing was reasonably predicted by cylinder theory by using the component
normal to the leading edge. At the highest angles of attack the heat transfer to
the leading edge of the wing with the blunt nose (for which the highest angles of
attack were obtained) was considerably less than that predicted by yawed cylinder
theory. This drop-off in heat transfer appeared to be comnnected with an outward
flow of air over the wing at high angles of attack.

The pressure and heat-transfer results obtained on the sphere nose appeared
to be unaffected by the presence of the wing in the range of angle of attack
studied (up to 46°).

For the slab portion of the wing, at low angles of attack, constant-pressure
strip theory was poor in predicting the heat transfer. At angles of attack of
10° to 200, strip theory gave a reasonable prediction of the test results. From
20° to the maximum test angle of attack, cross-flow theory gave good prediction
of the heat transfer on the center line of the wing except for areas of the wing
where transition is suspected to have occurred.

Much of the problem of predicting the heat transfer to delta wilngs is the
changing flow pattern with angle of attack and simple approaches to predicting
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the heat transfer are shown to be successful if the flow pattern peculiar to the
angle-of-attack range under consideration is taken into account.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., August 15, 1962.
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APPENDIX

EVALUATION OF HEATING DISTRIBUTION ON

TWO-DIMENSIONAL BLUNT NOSE BY LEES METHOD

For a two-dimensional blunt nose immersed in a perfect gas, Lees solution
(ref. 12) may be written as

h _ [E.F(s) - JE_F(S) (Al)
ho ag (d(u/a, ) I 1/2
-0 0 1 TO d{u a.o)>
J;<a(s;t) 0 yMZ(ﬁ) (E%_s/tL)o
where
2lu
TrFGs) =L 20 Ce (A2)
/2 [fs/t _P_£Ld<§ﬂl/2
0 Pouoo Ce t
in which
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for air with the Sutherland law

. J_T:o_ T + 198(°F)
e T Ty + 198(°F)

An exact solution of equation (A2) generally requires a graphical evalua-
tion of the integral in equation (A2).

If the velocity distribution 1s assumed to be linear (see figs. 6(c) and

8(b)), then with s/t = @/2
U . 1fdu) g
oo uoo<d¢>o

and with Ce assumed to be constant, equation (Al) reduces to

e}
L

h

" Vef 24 ag
o Po

If the pressure distribution over the two-dimensional nose is assumed to
be represented by an equation of the form

(a3)

&

fg - cos?f + b sin“g + cf” (AL)
0

upon substitution of equation (Ah) into and the integration of equation (AB)
the following result is obtained:

EE. - (1 - b)sing + c¢n:]¢

hﬁ = (85)

/(1 - b)(¢ sin 2§ - sin2¢) + ¢2(n_l‘f+’_2¢n + 14 b)

-1
According to the Newtonian approximation adopted by Lees, b = (7Mi)

and c¢ = 0. In the present case, the values of b, ¢, and n which accurately
represented the pressure distribution on a cylinder for M 2 4 were found to

be for 0< ¢ € 90O
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b = 0.16

c -0.00665

I

n=>5

These values are the values used in obtaining the heat-transfer-coefficient
distribution, shown in figure L4, by equation (A5) and by evaluating the integral
in equation (a2) graphically. This pressure distribution is not a strong func-
tion of Mach number; for example, for M_ = 3 the following values were found

to give a good fit to the pressure data (compare with fig. 3 after insertion in
eq. (4)) for 0 < ¢ < 100°

b = 0.167
c = -0.00268
n="719
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Figure 1.- Models.
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(b) Photographs of solid models used for oil-flow and force characteristics.

Figure 1.- Continued.
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(c) Sketch of 21-diameter force and oil-flow models.

Figure 1.- Concluded.
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Figure 6.- Pressure distributions on sphere in air.
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Figure 8.- Pressure, Mach number, and velocity distribution on sphere in helium.
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(a) Sharp prow. L-62-21k2

Figure 11.- Surface flow studies at an angle of attack of 0°.
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(b) Blunt prow. L-62-2143

Figure 11.- Concluded.
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(8) Sharp prow; windward side.

Figure 12.- Surface flow studies at M, = 6.9.
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(v) Blunt prow; windward side. L-62-2145

Figure 12.- Continued.



(c¢) Leeward side.

Figure 12.- Concluded.
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a=10°

a =20° a=30°

(a) Sharp prow; windward side.

~

Figure 13.- Surface flow studies at My = 9.6.
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a=30°

(b} Blunt prow; windward side.

Figure 1%.- Continued.
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(c) Leeward side.

Figure 1%.- Continued.
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(d) Details of oll flow on leeward side at low angle of attack.

Figure 13.- Concluded.
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Blunt prow

{a) a = 10°; windward side.

Figure 1b.- Surface flow studies at M, = 18.h.
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(b) Leeward side.

Figure 14.- Concluded.
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(a) Sharp prow. L-62-7002

Figure 15.~ Side-view schlieren photographs. a = 0°,
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(b) Blunt prow. L-62-T005

Figure 15.- Concluded.
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(a) Sharp prow.

Figure 16.- Top view schlieren photographs.
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(b) Blunt prow.

Figure 16.- Concluded.
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(a) Sharp prow. L-62-T006

Figure 17.- Slde-view schlieren photographs. M, = 6.8.
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(b) Blunt prow.

Figure 17.- Concluded.
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Cr

(a) Sharp prow. L-62-7008

Figure 18.- Side-view schlieren photographs. M, = 9.5.
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(b) Blunt prow.

Figure 18.- Concluded.
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(a) Sharp prow.

Figure 19.~ Top view schlieren photographs.

M, = 6.8.
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(b) Blunt prow.

Figure 19.- Concluded.
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{a) Sharp prow. L-62-7012

Figure 20.- Top view schlieren photographs. Mo = 9.6.



(b) Blunt prow.

Flgure 20.- Concluded.
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igure 21.-

(a) Top view.

(b) Side view.

Schlieren photographs.

a =109 M, = 18.4.
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Figure 22.- Concluded.
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“The National Aeronantice and Space Administration . . . shall . . .
provide for the widest practical appropriate dissemination of information
concerning irs activities and the results theveof . . . objectives being the
expansion of buman knowledge of phenomena in the atmosphere and space.”
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NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection witha NASA contract or grant and released under NASA auspices.
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